Quick Start Guide
Get RunLog AI integrated with your agents in under 5 minutes.
Prerequisites
Python 3.8+
orNode.js 16+
An existing AI agent or LLM application
Step 1: Installation
Install the SDK
Choose your preferred language
Python
pip install runlog-ai
TypeScript/JavaScript
npm install @runlog/sdk
Step 2: Basic Setup
Initialize RunLog
Add RunLog to your agent code
from runlog import RL # Initialize RunLog rl = RL( service="my-agent", env="development", api_key="your-api-key" # Get from dashboard ) # Wrap your agent logic with rl.run(task="user-query"): # Your existing agent code here response = your_agent_function() return response
Step 3: Add Observability
Track Tool Calls
Monitor external API calls and tool usage
with rl.run(task="search-and-respond"): # Track tool calls results = rl.tool("search", query="user question") # Track LLM calls response = rl.llm("gpt-4", prompt=f"Answer: {results}") return response
Step 4: Add Safety Policies
Enforce Runtime Policies
Prevent unsafe actions before they happen
with rl.run(task="financial-query"): # Enforce budget limits rl.enforce("max_cost_per_run", limit=0.50) # Require approval for sensitive actions if "transfer" in user_input: rl.enforce("require_human_approval") response = process_query(user_input) return response
Next Steps
Continue learning about RunLog AI capabilities